OA 3302
Winter 2003

Computer Lab 3: Multiple Server Queue with Reneging Customers

Concepts

» Simple use of containers

* Passing parametersin wai t Del ay() method

* Useofinterrupt() toimplement cancelling edge
« Congruenti al Seeds. SEED[]

* Multiple Runs

Description

Impatient customers arrive to a multiple-server queue; each customer is only willing to wait a cer-
tain amount of time in the queue, after which he or she will “renege.” A reneging customer leaves the
gueue and never returns to the system. For the model, these “renege times” will be assumed to be indepen-
dent identically distributed random variables, which will be denoted tg. The Event Graph for the server
portion of the model is shown in Figure 1.t

Themodel in Figure 1 adds reneging by creating unique customer objects upon arrival to the queue
(i.e. at the Arrival event). This customer is added to the end of afifo container (called ‘q’).2 The Renege
event is then scheduled, with the customer passed as a parameter. When the Renege event occurs, it
removed the customer it was passed from the queue and increments the renege count (R). Whenever a
StartService occurs first, however, the Renege event corresponding to that customer is cancelled.

{0.add(©)} tg {S—, c=q.remioverirsy), S+
. b= S|m'l’|mef -c.getcre Al w :’sim'l’lme - c.getCreationTime()}

| (g.size() >0)
I
v

Renege
0)

{g.remove(j), R++}

Figure 1. Event Graph for Multiple Server Queue with Reneging Customers

There are three new features of Simkit you will need to implement this model: defining events
with arguments, passing parameters on edges, and cancelling edges. Additionally, you will be performing
multiple runs.

1. Thearrivalswill be generated using the ArrivalProcess class from Lab O1.
2. The container g isafifo queue with the additional property that elements can be removed from the middle
aswell.

The Customer Class
First definethe Cust omer class (note that it does not subclass Si nEnt i t yBase). Thiswill have
two instance variables, one for the time the customer was “created”! and the second containing the renege

time for the customer. This time should be passed into the Cust oner 's constructor as adouble. These two
instance variable should be exposed by (public) getter methods.

The Customer Creator Class

Customers will be created by the Cust onmer Cr eat or class. ThisisaSi nEnti t yBase subclass
that has a RandonVar i at e instance variable (to generate the renege times). The Event Graph for Cus-

t omer Cr eat or isshownin Figure 2
>

{c = new Customer(...)}

Figure 2. Customer Creator Event Graph

The Event Graph in Figure 2 has the following implementation for the zero-parameter Arrival event:

public void doArrival () {
wai tDel ay("Arrival", 0.0, new Custoner(renegeTi ne.generate()));

}

The third argument to waitDelay passes the parameter to the event, as will be discussed next.

Defining Events with Arguments

Defining events with argumentsis very easy in Simkit. Simply add the arguments to the corre-
sponding “do” method. For the Event Graph in Figure 1 the Renege event has an argument which isan
integer. Thus, the doRenege() method in the ServerWithReneges class that implements Figure 1 should
have signature Cust omer .2

Passing Parameters on Edges

Parameters are passed as the third argument in the waitDelay() method corresponding to the sched-
uling edge. If thereis only one element in the signature of the event being scheduled then it is simply added
as a third argument.2 If the signature is a primitive type, then the third argument in the wai t Del ay() call
should be the corresponding Cbj ect wrapper. For example, if the Renege event method is defined as
public voi d doRenege(Custoner custoner), thenthewait Del ay() call inthedoArri v-
val (Cust onmer) method should be:

wai t Del ay(“ Renege”, custoner. get RenegeTi me(), custoner);

where r enegeTi ne is the randomly generated renege time and cust oner is a reference to the arriving
customer.

1. Use Schedul e. get Si nTi me() to get the current value of simulated time.
2. That is, public void doRenege(Cust omer cust omner)
3. If there are more than one element in the signature, then they must be wrapped in an Cbj ect[] array.

Canceling Edges

Canceling edges are implemented in Simkit asthe i nt er r upt () method of Si nEnti t yBase.
The form you should use here has signature (St ri ng, Chj ect), where the first argument is the name of
the event to be canceled and the second argument is the parameter corresponding to the event being can-
celled. Thefirst event that matches the value of the second parameter (as well as the name of the first
parameter) of the interrupt will be removed from the event list. If there is ho such event on the event list,
then nothing happens.

In this case, the customer who is starting service must have his corresponding Renege event can-
celed, so the following code is used:

Cust oner custonmer = (Custoner) queue.removeFirst();

i nterrupt (“Renege”, customner);
Here, queue isali nkedLi st containing the customer objects for all those customersin the

gueue who have not reneged. The i nt er rupt () statements should occur after the state transitions but
before the wai t Del ay() statements.

Thereisaclassinsi nki t.randomcalled Congr uent i al Seeds that has a public static array of
| ongs called SEED. These are 10 useful seedsthat can be used to initializeRandonVar i at e instances. For
thislab, use Congr uent i al Seeds. SEED[0] for arrivals, Congr uent i al Seeds. SEED[1] for service
times, and Congr uent i al Seeds. SEED[2] for renege times.

The ServerWithReneges Class

The Ser ver W t hReneges class processes customers according to the Event Graph in Figure 1. It
has the same parameters as the Ser ver class from Lab 02, but the state variables are slightly different, as
shown in Table 1.

Table 1: Parameters and States for ServerWithReneges Class

Parameter Type State Type
nunber Servers int nunber Avai | abl eServers int
serviceTi me RandonVari at e | queue Li nkedLi st &

nunber Ser ved i nt
nunmber Reneges i nt

a Inthej ava. util package

Note carefully the ‘ signatures’ for the eventsin Figure 1. The Arrival(c) event will be implemented
by adoArrival method with signature (Cust oner) . After adding the incoming Customer to the queue,
the firePropertyChange call lookslike this:

firePropertyChange("nunberl nQueue", queue.size() - 1, queue.size());

Since the customer has just been added to the queue, the ‘old value' of the number in the queue is one less
than the current number. The wai t Del ay() that schedules the Renege event should get the renege time
from the Cust omer and should pass the Cust omer instance as the third argument.

The StartService event has no argument, so the doSt ar t Ser vi ce() method should likewise not
either. Inside the method, you will need areferenceto the Cust omer at the head of the queue, so use the

1. Remember that parameters will have setters and getters, whereas state variables will only have getters.

renoveFi rst () method of Li nkedLi st to get the current customer. To implement the value of ‘D’
indicated in Figure 1, fire a PropertyChange event called “del ayl nQueue” whose value isthe difference
between the current time (Schedul e. get Si niTi me()) and the time the current customer was created.
After all states have been changed, invoke the i nt er r upt () method, and finally the wai t Del ay()
method.

Execution Class

Y our execution class should instantiate an Ar ri val Pr ocess instance, aCust oner Cr eat or
instance, and a Ser ver W t hReneges instance. The SimEventListener structure is as shown in Figure 3.

ArrivalProcess CustomerCreator ServerWithReneges

Figure 3. SmEventListener Structure

In addition to the two Si npl eSt at sTi meVar yi ng instances for nunber | nQueue and nunber -
Avai | abl eSer ver s, instantiate two instances of Si npl eSt at sTal | y with Strings“ del ayl nQueue”
and “ti mel nSyst enf and add those two instances as Pr oper t yChangelLi st ener s to the Ser ver -
W t hReneges instance. These use Tally statistics and will provide the estimates for the mean delay in
gueue and mean time in the system, respectively.

Parameters for Runs
Use the following parameters for your runs:

e Interarrival times are Exponential (1.5)
* Number of servers=2

* Servicetimesare Gamma(2.5, 1.2)

* Renegetimesare Uniform(4.0, 6.0)

Y our constructor should have a signature the same as your Ser ver class from Lab 02.

Output

Y ou should use verbose and/or single-step modes to debug your model. When you are satisfied,
perform arun for 1000.0 time units, producing the following output:

Arrival Process
Interarrival Tinmes Exponential (1.5)
Server with Renegi ng Custoners
Nunmber Servers: 2
Service Times: Gamma (2.5, 1.2)
Renege distribution: Uniform (4.0, 6.0)
Si mul ati on ended at tinme 1000. 000
Nunmber Arrivals: 665
Nunmber Served: 563
Nunmber Reneges: 96
Percent Reneges: 0.1452
Avg # in Queue: 1.5460
Utilization: 0.8710
Avg Delay in Queue: 1.9192

Avg Tine in System 5.0070

The “utilization” is defined to be the average utilization per server.! The percent reneges should include
those customers who have reneged, finished service, or are currently in service, but not those in the queue.

Ddliverables

Turn in hard copies of your source code and the output from the long run (1000 time units).
Frequently Asked Questions

Can | have a primitive argument in my ‘do’ method?

Y es. However, the value must be wrapped in an Object when invoked in the waitDelay() state-
ment. For example the method:

public void doThis(int j) {
/1 do sonething

}
should be scheduled like this:

wai t Del ay(“This”, 1.0, new Integer(3));

What if my ‘do’ method has more than one parameter?

If a‘do’ method has more than one parameter then you will also need to further wrap the Objects
in an Object array. For example, the following method:

public void doThat (int k, double x, String s) {
}

should be scheduled using a call something like this:

wai t Del ay(“That”, 1.1,
new Object[] {new Integer(42), new Doubl e(3.141), “foobar”});

Where do interrupt() calls go again?

Canceling edges are (by convention) executed after state transitions but before any scheduling
edges. Therefore, i nt er rupt () callsmust be putina‘do’ method after all states have been changed and
before any wai t Del ay() calls.

1 Thatis, 1.0—E where § isthe average number of available serversand k isthe total number of servers.

